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1. 

For evaluating minutely the probabilistic response of the actual environmental acoustic
system excited by an arbitrary random input, it is important to predict a whole probability
distribution form closely connected with the evaluation indexes Lx , Leq and so on [1, 2].
However, the actual environmental acoustic system is too complicated to find the
structural model of the dynamic type based on physical laws from a bottom-up viewpoint.
In this note, a new type of evaluation method is proposed by introducing three functional
models matched to a more precise prediction of the response output probability
distribution from an object-oriented viewpoint. Originally, because of the positive variable
of the sound intensity, the response output probability density function can be reasonably
expressed theoretically in the general form of a statistical type of Laguerre expansion series
[3]. Thus, the relationship between input and output is described by finding the regression
relationship between the distribution parameters (including the expansion coefficients of
this expression) and the stochastic input. These regression functions can be derived in terms
of the orthogonal series expansion of the joint probability density function on input and
output [5, 6]. Additionally, by considering the contamination of background noise in the
observation of the output, three functional models are derived. By employing the statistical
moments of the background noise known in advance under the assumption of stationarity
of the background noise, their parameters are determined based on the well-known least
squares error criteria [9].

2.  

2.1. Three functional models of acoustic system contaminated by a background noise
Let us consider the acoustic system contaminated by the background noise by letting

x, y, v and z be the sound intensities of the input, the output, the background noise and
the observation contaminated by v, respectively. Here, it is noted that the statistical
moments of the stationary background noise v can be evaluated (in advance, in a special
case in which the input is not added) under the assumption of stationarity of the
background noise. Then, the probability density function (abbreviated to ‘‘p.d.f.’’) p(y)
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of output y, fluctuating only in the positive value region, can be reasonably expressed in
the following general form of the statistical type of Laguerre expansion series [3]:

P(y)=PG (y; my , sy ) s
a

n=0

AnL(my −1)
n (y/sy ), (1)

with

my =
�y�2

�(y− �y�)2�, sy =
�(y− �y�)2�

�y� and An =
G(my )n!

G(my + n) WL(my −1)
n 0y

sy1w, (2)

where x and v are originally independent of each other. Here, G(m) denotes a gamma
function and � � denotes the expectation of y. Furthermore, pG (z; m, s) and L(a)

n (x) denote,
respectively, a gamma p.d.f. [4] and an associated Laguerre polynomial [5], defined as
follows:

PG (z; m, s)=
1

G(m)s 0zs1
m−1

e−z/s and L(a)
n (x)= s

n

j=0 0n+ a

n− j1 (−x)j

j!
. (3)

Two parameters, my and sy , and every expansion coefficient An depend on the fluctuation
of input x and the stochastic relationship between input x and output y. If our concern
is concentrated upon predicting a p.d.f. of the output y, especially based on the stochastic
information of the input x, from an object-oriented viewpoint, it is desirable that the
functional relationship between x and y should be described simultaneously in terms of
the regression’s styles: �y =x�, �(y− �y�)2=x� and �L(my −1)

k (y/sy ) =x� rather than based on
only the physical rule of correspondence between x and y. Here, � · =x� denotes the
conditional expectation conditioned by x. These regression functions are defined in
advance as follows:

�y =x�=g
a

0

yp(y =x) dy, �(y− �y�)2=x�=g
a

0

(y− �y�)2p(y =x) dy

and

WL(my −1)
k 0y

sy1bxw=g
a

0

L(my −1)
k 0y

sy1p(y =x) dy, (4)

where p(y =x) is the conditional p.d.f. of y conditioned by x, and these regression functions
are obviously of a non-linear type. For the purpose of finding general representations of
these regression functions, let us use the method of orthogonal series expansion [5, 6] in
close connection with the p.d.f. of y in equation (1), by letting p(x) and p(x, y) denote
the p.d.f. of x and the joint p.d.f. of x and y. After expanding p(x) and p(x, y) into the
orthonormal series expansion forms with weighting functions pG (x; mx , sx ) and
pG (x; mx , sx )pG (y; my , sy ) as basic p.d.f.’s, respectively, and using the definition of the
conditional probability p(y =x)= p(x, y)/p(x) [7, 8], p(y =x) can be expressed as follows [9]:

p(y =x)=

pG (y; my , sy ) s
a

m=0

s
a

n=0

Amn8
(1)
m (x)8(2)

n (y)

s
a

m=0

Am08
(1)
m (x)

, (5)
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where

8(1)
m (x)=X G(mx )m!

G(mx +m)
L(mx −1)

m 0x
sx1, 8(2)

n (y)=X G(my )n!
G(my + n)

L(my −1)
n 0y

sy1, (6)

Am0 = �8(1)
m (x)� and Amn = �8(1)

m (x)8(2)
n (y)�. (7)

Here, 8(1)
m (x) and 8(2)

n (y) are the orthonormal polynomials satisfying the following
relationships:

g
a

0

pG (x; mx , sx )8(1)
m (x)8(1)

n (x) dx= dmn , g
a

0

pG (y; my , sy )8(2)
m (y)8(2)

n (y) dy= dmn , (8)

where dmn denotes a Kronecker delta. Upon expanding y and (y− �y�)2 into the
orthogonal series expansion forms in advance as follows:

y= s
1

k=0

C1k8
(2)
k (y) and (y− �y�)2 = s

2

k=0

C2k8
(2)
k (y), (9)

the above regression functions can be expressed, respectively, as follows:

�y =x�=

s
a

m=0

am8(1)
m (x)

s
a

m=0

Am08
(1)
m (x)

, �(y− �y�)2=x�=

s
a

m=0

bm8(1)
m (x)

s
a

m=0

Am08
(1)
m (x)

and

WL(my −1)
k 0y

sy1b
x

w=

s
a

m=0

gmk8
(1)
m (x)

s
a

m=0

Am08
(1)
m (x)

, (10)

where

am = s
1

n=0

C1nAmn , bm = s
2

n=0

C2nAmn and gmk =zG(my + k)/G(my )k!Amk , (11)

after substituting equations (5) and (9) into equation (4) and using equation (8). Since the
observed quantity is not y but z contaminated by the background noise v, it is necessary
to find a way to identify the above regression parameters in equation (10) only by using
observed z values and the previously known statistical moments of v. On the basis of the
additivity of the sound intensity quantity and the addition theorem for the associated
Laguerre polynomial, the following relationships can be found:

z= y+ v, (12)

(z− �z�)2 = (y− �y�)2 +2(y− �y�)(v− �v�)+ (v− �v�)2, (13)
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and

L(my )
n 0z

sy1=L(my )
n 0y+ v

sy 1= s
n

k=0

L(my −1)
k 0y

sy1L(0)
n− k0v

sy1. (14)

After replacing y, (y− �y�), (y− �y�)2 and L(my −1)
k (y/sy ) by �y =x�, �y− �y�=x�,

�(y− �y�)2=x� and �L(my −1)
k (y/sy ) =x�, the three functional system models for the resultant

observation z can be introduced, corresponding to equations (12), (13) and (14)
respectively, from the top-down viewpoint of object-oriented type as follows:

z=

s
M

m=0

am8(1)
m (x)

s
M

m=0

Am08
(1)
m (x)

+ v+ o1, (15)

(z− �z�)2 =

s
M

m=0

bm8(1)
m (x)

s
M

m=0

Am08
(1)
m (x)

+ (v− �v�)2 +2�y− �y�=x�(v− �v�)+ o2 (16)

and

L(my )
n 0z

sy1= s
n

k=0

s
M

m=0

gmk8
(1)
m (x)

s
a

m=0

Am08
(1)
m (x)

L(0)
n− k0v

sy1+ o3, (17)

especially after taking only the first finite number M in the original infinite number of
expansion expression (10). Here, o1, o2 and o3 are accidental errors due to truncating infinite
terms of theoretical regression functions. In the standard method, it is usual that only
equation (12) is employed and then y is expressed by a linear regression model or a
convolution model based on some physical laws only from a bottom-up viewpoint. In the
practical case when predicting a response probability distribution by using only this
artificially simplified physical model, some filtering effect inevitably appears, especially at
both ends of the fluctuating amplitude. On the other hand, if the above proposed three
functional models supported by the mean, variance and higher order moments of the
specific Laguerre polynomial type are employed simultaneously, one can predict in minute
detail the whole probability distribution form of the output fluctuation.

2.2. Identification of functional models and prediction of the response probability distribution
The unknown parameters ak (k=0, 1, . . . , M), bk (k=0, 1, . . . , M) and gmn

(m=0, 1, . . . , M and n=1, 2, . . . , M) in equation (10) can be determined by the
well-known least squares error critieria [10] (i.e., �o2

i �:min (i=1, 2, 3)). Since
�y�= ��y =x��x and �(y− �y�)2�= ��(y− �y�)2=x��x can be evaluated once after
�y =x� and �(y− �y�)2=x� are identified, two distribution parameters, my and sy , can easily
be estimated from equation (2). Here, � �x denotes an expectation operation about x. For



    239

instance, the parameters am in equation (15) can be estimated based on minimizing the
expectation of o2

1 as follows:

�o2
1�=E2z−

s
M

m=0

am8(1)
m (x)

s
M

m=0

Am08
(1)
m (x)

− v3
2

e
x,z,v

, (18)

where � �x,z,v denotes the expectation about x, z and v. More concretely, through the
minimization operation: 1�o2

1�/1ak =0 (k=0, 1, . . . , M), the following simultaneous
equations are obtained:

s
M

m=0 E 8(1)
k (x)8(1)

m (x)

0 s
M

m=0

Am08
(1)
m (x)1

2e am =E 8(1)
k (x)

s
M

m=0

Am08
(1)
m (x)

(z− �v�)e
x,z

(k=0, 1, . . . , M). (19)

In the derivation of equation (19), the natural condition of the statistical independency
between x and v is employed. Similarly, after minimizing the expectation of the squared
error in equation (16) (i.e., �o2

2�:min), the unknown parameters bk in equation (16) can
be estimated by solving the following equation:

s
M

m=0 E 8(1)
k (x)8(1)

m (x)

0 s
M

m=0

Am08
(1)
m (x)1

2e bm =E 8(1)
k (x)

s
M

m=0

Am08
(1)
m (x)

{(z− �z�)2 − �(v− �v�)2�}e
x,z

(k=0, 1, 2, . . . , M). (20)

Here, in the derivation of equation (20), the statistical independency property between the
input and the background noise has been employed. To estimate the gmk , it is necessary
to estimate my and sy in advance, responding to the identification input. That is, by solving
equations (19) and (20), am and bm must be estimated. Then, by executing the simple
expectations ��y =x��x and ��(y− �y�)2=x��x according to the input data used in the
above estimation procedure of am and bm , by use of equation (10) and employing equation
(2), my and sy can be estimated. After the above preparation, let us estimate the parameters
gmk in equation (17) by using the similar least squares error criterion (i.e., �o2

3�:min). That
is, we finally have the following equations:

s
M

m=0 E 8(1)
i (x)8(1)

m (x)

0 s
M

m=0

Am08
(1)
m (x)1

2egmn

=E 8(1)
i (x)

s
M

m=0

Am08
(1)
m (x) 8L(my )

n 0z
sy1− s

n−1

k=0

s
M

m=0

gmk8
(1)
m (x)

s
M

m=0

Am08
(1)
m (x)

WL(0)
n− k 0v

sy1w9e
x,z

(i=0, 1, 2, . . . , M and n=1, . . . , M). (21)
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Here, in the derivation of equation (21), the statistical independency property between the
input and the background noise has also been employed. By solving equation (21), gmk can
be estimated.

Thus, by executing the expectations My =xmx , M(y− Qyq)2=xmx and ML(my −1)
k (y/sy ) =xmx

according to an arbitrary random input x by employing equation (10) with the above
estimated am , bm and gmk , my , sy and An in equation (2) can be predicted. Accordingly, from
equation (1), the objective output response p.d.f. p(y) of y to an arbitrary random input
can be explicitly predicted.

3.  

To confirm the effectiveness of the proposed method, the present experiments have been
carried out for the sound insulation system [11, 12] shown in Figure 1. A sound insulation
wall was set up between the transmission room and the reception room. Specifically, a
sound-bridge type double wall with two 1.2 mm thick aluminium plates was employed.
Owing to the complicated mechanism of this sound insulation system, the structural model
based on physical laws cannot be found theoretically. Road traffic noise was radiated in
the transmission room from a loudspeaker, and the response level fluctuation was recorded
synchronously by sound level meters (with a fast mode and an A weighting network) in
each room. This road traffic noise fluctuating non-stationarily was recorded in a city in
advance. Each sound level was sampled every one second and data of size 1000 was
obtained. Then, the observation was artificially composed of the above output data and
the white noise generated by a noise generator in an anechoic room (positively adjusted
3 dB lower in the mean than the above output sound level in advance) for the purpose
of comparing the proposed theoretical curve with experimental values. After transforming
the sound level data to the sound intensity data, the proposed theoretical method was

Figure 1. A block diagram for measuring the stochastic transmission characteristics of the sound insulation
system when excited by an actual random noise.
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Figure 2. A comparison between the theoretically predicted cumulative probability distributions for the case
M=2 in equations (19), (20) and (21) and the experimentally sampled values of the sound level without the
background noise in a transmission room excited by road traffic noise. Experimentally sampled values are marked
by dots (W) and theoretical curves are shown with the degree of approximation (——, first approximation; – – –,
second approximation; — - —, third approximation).

applied. Then, the parameters of the functional models were determined by using the first
800 pairs of input and observation values, and the p.d.f. of the response sound fluctuation
without a background noise was predicted corresponding to the other 200 input level data.
Again, these response sound intensity data were transformed to the sound pressure level
data and their corresponding curves were drawn on a dB scale. The response cumulative
probability distributions for two cases with M=2 and M=3 are shown in Figures 2 and
3, respectively. Both figures show good agreement between the theoretically predicted
curves and experimentally sampled points, except for the lower part of the probability
distribution curves.

Figure 3. A comparison between the theoretically predicted cumulative probability distributions for the case
M=3 in equations (19), (20) and (21) and the experimentally sampled values of the sound level without the
background noise in a transmission room excited by road traffic noise. Experimentally sampled values are marked
by dots (W) and theoretical curves are shown with the degree of approximation (——, first approximation; – – –,
second and third approximations; — - —, fourth approximation).
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4. 

To predict more precisely the probability distribution function form of the response
fluctuation for an environmental acoustic system with an arbitrary sound input under the
existence of background noise, a new stochastic method has been proposed by introducing
three functional models on the sound intensity scale matched to the problem-oriented
viewpoint of, especially, evaluating the probabilistic response. First, the framework of
response probability distribution expression has been established in a unified form of a
statistical Laguerre series expansion type. Then, the relationship between input and output
has been described by extended regression functions to input for the lower and higher order
moments of a specific type directly connected to this expansion form of the response p.d.f.
These extended regression functions have been derived by use of the orthogonal series
expansion of the joint p.d.f. of the input and output. After these regression functions have
been directly related to the observation data contaminated by the background noise
through the proposed functional models, all of the parameters of the regression function
curves have been estimated based on the well-known least squares error criteria under the
assumption of stationarity of the background noise. Finally, the proposed method has also
been confirmed experimentally by applying it to the actual sound insulation system.

Such an estimation method, reflecting a top-down viewpoint (supported by the high
order moments) on the basis of a bottom-up viewpoint (supported by the lower order
moments, such as mean and variance) for functionally predicting the output response p.d.f.
seems as yet to be at an early stage of study, and so there remain many future problems,
such as: to apply this method to many other engineering fields; and to find a more practical
estimation method through any approximation of this method and to find many other
types of methods of unification between this functional estimation method from the
top-down viewpoint owing to the variety of p.d.f. forms and the usual estimation method
from the bottom-up viewpoint owing to the physical mechanism.
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